Computer Science (2024-25) CLASS XI Code No. 083

1. Learning Outcomes

Students should be able to:

- a) develop basic computational thinking
- b) explain and use data types
- c) appreciate the notion of algorithms
- d) develop a basic understanding of computer systems- architecture and operating system
- e) explain cyber ethics, cyber safety, and cybercrime
- f) understand the value of technology in societies along with consideration of gender and disability issues.

2. Distribution of Marks

Unit No.	Unit Name	Marks	Periods	
			Theory	Practical
1	Computer Systems and Organisation	10	10	10
2	Computational Thinking and Programming -1	45	80	60
3	Society, Law, and Ethics	15	20	_
	Total	70	110	70

3. Unit wise Syllabus

Unit 1: Computer Systems and Organisation

- Basic computer organisation: Introduction to Computer System, hardware, software, input device, output device, CPU, memory (primary, cache and secondary), units of memory (bit, byte, KB, MB, GB, TB, PB)
- Types of software: System software (Operating systems, system utilities, device drivers), programming tools and language translators (assembler, compiler, and interpreter), application software
- Operating System(OS): functions of the operating system, OS user interface
- Boolean logic: NOT, AND, OR, NAND, NOR, XOR, NOT, truth tables and De Morgan's laws, Logic circuits
- Number System: Binary, Octal, Decimal and Hexadecimal number system;

- conversion between number systems
- Encoding Schemes: ASCII, ISCII, and Unicode (UTF8, UTF32)

Unit 2: Computational Thinking and Programming - I

- Introduction to Problem-solving: Steps for Problem-solving (Analyzing the problem, developing an algorithm, coding, testing, and debugging), representation of algorithms using flowchart and pseudocode, decomposition
- Familiarization with the basics of Python programming: Introduction to Python, Features of Python, executing a simple "hello world" program, execution modes: interactive mode and script mode, Python character set, Python tokens(keyword, identifier, literal, operator, punctuator), variables, concept of I-value and r-value, use of comments
- Knowledge of data types: Number(integer, floating point,complex), boolean, sequence(string, list, tuple), None, Mapping(dictionary), mutable and immutable data types.
- Operators: arithmetic operators, relational operators, logical operators, assignment operators, augmented assignment operators, identity operators (is, is not), membership operators (in not in)
- Expressions, statement, type conversion, and input/output: precedence of operators, expression, evaluation of an expression, type-conversion (explicit and implicit conversion), accepting data as input from the console and displaying output.
- Errors- syntax errors, logical errors, and run-time errors
- Flow of Control: introduction, use of indentation, sequential flow, conditional and iterative flow
- Conditional statements: if, if-else, if-elif-else, flowcharts, simple programs: e.g.: absolute value, sort 3 numbers and divisibility of a number.
- Iterative Statement: for loop, range(), while loop, flowcharts, break and continue statements, nested loops, suggested programs: generating pattern, summation of series, finding the factorial of a positive number, etc.
- Strings: introduction, string operations (concatenation, repetition, membership and slicing), traversing a string using loops, built-in functions/methods-len(), capitalize(), title(), lower(), upper(), count(), find(), index(), endswith(), startswith(), isalnum(), isalpha(), isdigit(), islower(), isupper(), isspace(),lstrip(), rstrip(), strip(), replace(), join(), partition(), split()
- Lists: introduction, indexing, list operations (concatenation, repetition, membership and slicing), traversing a list using loops, built-in functions/methods—len(), list(), append(), extend(), insert(), count(), index(), remove(), pop(), reverse(), sort(), sorted(), min(), max(), sum(); nested lists, suggested programs: finding the maximum, minimum, mean of numeric values stored in a list; linear search on list of numbers and counting the frequency of elements in a list.
- Tuples: introduction, indexing, tuple operations (concatenation, repetition, membership and slicing); built-in functions/methods len(), tuple(), count(), index(), sorted(), min(), max(), sum(); tuple assignment, nested tuple; suggested programs: finding the minimum, maximum, mean of values stored in a tuple; linear

- search on a tuple of numbers, counting the frequency of elements in a tuple.
- Dictionary: introduction, accessing items in a dictionary using keys, mutability of a dictionary (adding a new term, modifying an existing item), traversing a dictionary, built-in functions/methods len(), dict(), keys(), values(), items(), get(), update(), del, clear(), fromkeys(), copy(), pop(), popitem(), setdefault(), max(), min(), sorted(); Suggested programs: count the number of times a character appears in a given string using a dictionary, create a dictionary with names of employees, their salary and access them.
- Introduction to Python modules: Importing module using 'import <module>' and using from statement, importing math module (pi, e, sqrt(), ceil(), floor(), pow(), fabs(), sin(), cos(), tan()); random module (random(), randint(), randrange()), statistics module (mean(), median(), mode()).

Unit 3: Society, Law and Ethics

- Digital Footprints
- Digital Society and Netizen: net etiquettes, communication etiquettes, social media etiquettes
- Data Protection: Intellectual property rights (copyright, patent, trademark), violation of IPR (plagiarism, copyright infringement, trademark infringement), open source software and licensing (Creative Commons, GPL and Apache)
- Cyber Crime: definition, hacking, eavesdropping, phishing and fraud emails, ransomware, cyber trolls, cyber bullying
- Cyber safety: safely browsing the web, identity protection, confidentiality
- Malware: viruses, trojans, adware
- E-waste management: proper disposal of used electronic gadgets.
- Information Technology Act (IT Act)
- Technology and society: Gender and disability issues while teaching and using computers

4. Practical

S.No.	Unit Name	Marks (Total=30)	
1.	Lab Test (12 marks)		
	Python program (60% logic + 20% documentation + 20% code quality)	12	
2.	Report File + Viva (10 marks)		
	Report file: Minimum 20 Python programs	7	
	Viva voce	3	
3.	Project (that uses most of the concepts that have been learnt)	8	

5. Suggested Practical List

Python Programming

- Input a welcome message and display it.
- Input two numbers and display the larger / smaller number.
- Input three numbers and display the largest / smallest number.
- Generate the following patterns using nested loops:

Pattern-1	Pattern-2	Pattern-3
* ** ** *** ***	12345 1234 123 12	A AB ABC ABCD ABCDE

• Write a program to input the value of x and n and print the sum of the following series:

$$\rightarrow$$
 1 + x + x² + x³ + x⁴ + ... xⁿ

$$\rightarrow$$
 1 - x + x^2 - x^3 + x^4 - \cdots x^n

$$\Rightarrow x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{4} + \cdots + \frac{x^n}{n}$$

$$\Rightarrow x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots + \frac{x^n}{n!}$$

- Determine whether a number is a perfect number, an Armstrong number or a palindrome.
- Input a number and check if the number is a prime or composite number.
- Display the terms of a Fibonacci series.
- Compute the greatest common divisor and least common multiple of two integers.
- Count and display the number of vowels, consonants, uppercase, lowercase characters in string.
- Input a string and determine whether it is a palindrome or not; convert the case of characters in a string.
- Find the largest/smallest number in a list/tuple
- Input a list of numbers and swap elements at the even location with the elements at the odd location.
- Input a list/tuple of elements, search for a given element in the list/tuple.
- Create a dictionary with the roll number, name and marks of n students in a class and display the names of students who have marks above 75.

6. Suggested Reading Material

- NCERT Textbook for Computer Science (Class XI)
- Support Material on CBSE website